首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   102篇
  2020年   12篇
  2019年   11篇
  2018年   10篇
  2017年   16篇
  2016年   16篇
  2015年   53篇
  2014年   32篇
  2013年   25篇
  2012年   54篇
  2011年   48篇
  2010年   20篇
  2009年   22篇
  2008年   40篇
  2007年   31篇
  2006年   36篇
  2005年   35篇
  2004年   38篇
  2003年   34篇
  2002年   19篇
  2001年   19篇
  2000年   18篇
  1999年   12篇
  1998年   7篇
  1996年   11篇
  1995年   7篇
  1994年   13篇
  1993年   9篇
  1992年   14篇
  1991年   19篇
  1990年   17篇
  1989年   13篇
  1988年   15篇
  1987年   16篇
  1986年   12篇
  1985年   12篇
  1984年   13篇
  1983年   7篇
  1982年   12篇
  1981年   16篇
  1980年   8篇
  1978年   9篇
  1977年   9篇
  1976年   10篇
  1974年   6篇
  1973年   8篇
  1972年   8篇
  1971年   11篇
  1970年   6篇
  1969年   7篇
  1968年   9篇
排序方式: 共有992条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
A common group of muscular dystrophies is associated with the aberrant glycosylation of α-dystroglycan. These clinically heterogeneous disorders, collectively termed dystroglycanopathies, are often associated with central nervous system and more rarely eye pathology. Defects in a total of eight putative and demonstrated glycosyltransferases or accessory proteins of glycosyltransferases have been shown to cause a dystroglycanopathy phenotype. In recent years the systematic analysis of large patient cohorts has uncovered a complex relationship between the underlying genetic defect and the resulting clinical phenotype. These studies have also drawn attention to the high proportion of patients that remain without a genetic diagnosis implicating novel genes in the pathogenesis of dystroglycanopathies. Recent glycomic analyses of α-dystroglycan have reported complex patterns of glycan composition and have uncovered novel glycan modifications. The exact glycan synthesis and modification pathways involved, as well as their role in ligand binding, remain only partially characterised. This review will focus on recent studies that have extended our knowledge of the mechanisms underlying dystroglycanopathies and have further characterised this patient population.  相似文献   
105.
Naturally occurring anti-carbohydrate antibodies play a major role in both the innate and adaptive immune responses. To elicit an anti-carbohydrate immune response, glycoproteins can be processed to glycopeptides and presented by the classical antigen-presenting molecules, major histocompatibility complex (MHC) Class I and II. In contrast, much less is known about the mechanism(s) for anti-carbohydrate responses to glycolipids, although it is generally considered that the CD1 family of cell surface proteins presents glycolipids to T cells or natural killer T (NKT) cells. Using model carbohydrate systems (isogloboside 3 and B blood group antigen), we examined the anti-carbohydrate response on glycolipids using both antibody neutralisation and knockout mouse-based experiments. These studies showed that CD4(+) T cells were required to generate antibodies to the carbohydrates expressed on glycolipids, and unexpectedly, these antibody responses were CD1d and NKT cell independent. They also did not require peptide help. These data provide new insight into glycolipid antigen recognition by the immune system and indicate the existence of a previously unrecognised population of glycolipid antigen-specific, CD1-independent, CD4(+) T cells.  相似文献   
106.
The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Plant resistance can impose stress on invading pathogens that can lead to, and select for, beneficial changes in the bacterial genome. The Pseudomonas syringae pv. phaseolicola (Pph) genomic island PPHGI-1 carries an effector gene, avrPphB (hopAR1), which triggers the hypersensitive reaction in bean plants carrying the R3 resistance gene. Interaction between avrPphB and R3 generates an antimicrobial environment within the plant, resulting in the excision of PPHGI-1 and its loss from the genome. The loss of PPHGI-1 leads to the generation of a Pph strain able to cause disease in the plant. In this study, we observed that lower bacterial densities inoculated into resistant bean (Phaseolus vulgaris) plants resulted in quicker PPHGI-1 loss from the population, and that loss of the island was strongly influenced by the type of plant resistance encountered by the bacteria. In addition, we found that a number of changes occurred in the bacterial genome during growth in the plant, whether or not PPHGI-1 was lost. We also present evidence that the circular PPHGI-1 episome is able to replicate autonomously when excised from the genome. These results shed more light onto the plasticity of the bacterial genome as it is influenced by in planta conditions.  相似文献   
107.
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR.  相似文献   
108.
Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105-154 of dFLASH bind to amino acids 1-78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies.  相似文献   
109.
Aim Although satellite tracking has yielded much information regarding the migrations and habitat use of threatened marine species, relatively little has been published about the environmental niche for loggerhead sea turtles Caretta caretta in north‐west Atlantic waters. Location North Carolina, South Carolina and Georgia, USA. Methods We tracked 68 adult female turtles between 1998 and 2008, one of the largest sample sizes to date, for 372.2 ± 210.4 days (mean ± SD). Results We identified two strategies: (1) ‘seasonal’ migrations between summer and winter coastal areas (n = 47), although some turtles made oceanic excursions (n = 4) and (2) occupation of more southerly ‘year‐round’ ranges (n = 18). Seasonal turtles occupied summer home ranges of 645.1 km2 (median, n = 42; using α‐hulls) predominantly north of 35 ° latitude and winter home ranges of 339.0 km2 (n = 24) in a relatively small area on the narrow shelf off North Carolina. We tracked some of these turtles through successive summer (n = 8) and winter (n = 3) seasons, showing inter‐annual home range repeatability to within 14.5 km of summer areas and 10.3 km of winter areas. For year‐round turtles, home ranges were 1889.9 km2. Turtles should be tracked for at least 80 days to reliably estimate the home range size in seasonal habitats. The equivalent minimum duration for ‘year‐round’ turtles is more complex to derive. We define an environmental envelope of the distribution of North American loggerhead turtles: warm waters (between 18.2 and 29.2 °C) on the coastal shelf (in depths of 3.0–89.0 m). Main conclusions Our findings show that adult female loggerhead turtles show predictable, repeatable home range behaviour and do not generally leave waters of the USA, nor the continental shelf (< 200m depth). These data offer insights for future marine management, particularly if they were combined with those from the other management units in the USA.  相似文献   
110.

Background

Characterizing infectious disease burden in Africa is important for prioritizing and targeting limited resources for curative and preventive services and monitoring the impact of interventions.

Methods

From June 1, 2006 to May 31, 2008, we estimated rates of acute lower respiratory tract illness (ALRI), diarrhea and acute febrile illness (AFI) among >50,000 persons participating in population-based surveillance in impoverished, rural western Kenya (Asembo) and an informal settlement in Nairobi, Kenya (Kibera). Field workers visited households every two weeks, collecting recent illness information and performing limited exams. Participants could access free high-quality care in a designated referral clinic in each site. Incidence and longitudinal prevalence were calculated and compared using Poisson regression.

Results

Incidence rates resulting in clinic visitation were the following: ALRI — 0.36 and 0.51 episodes per year for children <5 years and 0.067 and 0.026 for persons ≥5 years in Asembo and Kibera, respectively; diarrhea — 0.40 and 0.71 episodes per year for children <5 years and 0.09 and 0.062 for persons ≥5 years in Asembo and Kibera, respectively; AFI — 0.17 and 0.09 episodes per year for children <5 years and 0.03 and 0.015 for persons ≥5 years in Asembo and Kibera, respectively. Annually, based on household visits, children <5 years in Asembo and Kibera had 60 and 27 cough days, 10 and 8 diarrhea days, and 37 and 11 fever days, respectively. Household-based rates were higher than clinic rates for diarrhea and AFI, this difference being several-fold greater in the rural than urban site.

Conclusions

Individuals in poor Kenyan communities still suffer from a high burden of infectious diseases, which likely hampers their development. Urban slum and rural disease incidence and clinic utilization are sufficiently disparate in Africa to warrant data from both settings for estimating burden and focusing interventions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号